

Edexcel IAL Chemistry A-Level

Topic 1 - Formulae, Equations and Amount of Substance

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is an atom?

What is an atom?

The smallest particle of a chemical element.

What is an element?

What is an element?

An element contains only one type of atom.

What is an ion?

What is an ion?

An atom or a group of atoms that are charged due to the gain or loss of at least one electron.

What is a molecule?

What is a molecule?

Molecules are made up of at least two atoms chemically bonded together.

What is a compound?

What is a compound?

Compounds are molecules which contain different elements, so they are made up of different types of atoms.

Define empirical formula

Define empirical formula

The simplest whole number ratio of atoms of each element in a compound.

Define molecular formula

Define molecular formula

The actual number of atoms of each element present in a compound.

What is the empirical formula of Fe₂O₄?

What is the empirical formula for Fe₂O₄?

FeO₂

A molecule has the empirical formula C₄H₃O₂ and a relative molecular mass of 166. What is the molecular formula?

A molecule has the empirical formula $C_4H_3O_2$ and a relative molecular mass of 166. What is the molecular formula?

Empirical mass = 4(12) + 3(1) + 2(16) = 83

Relative molecular mass = 166

Compare molecular mass with empirical mass = 166 / 83 = 2

So the molecular formula is double the empirical formula: C₈H₆O₉

What is the unit for amount of substance?

What is the unit for amount of substance?

The mole (mol)

Define the term mole

Define the term mole

The amount of any substance containing the same number of particles as there are atoms in exactly 12 g of carbon-12.

Define the Avogadro constant

Define the Avogadro constant

The number of particles in one mole of a substance. This is 6.02 x 10²³ particles.

What is the equation linking Avogadro's constant to moles?

What is the equation linking Avogadro's constant to moles?

Number of particles/atoms/ions =

Moles x Avogadro's constant

There are 4.816×10^{24} atoms of iron in a sample. How many moles of iron are in the sample?

There are 4.816×10^{24} atoms of iron in a sample. How many moles of iron are in the sample?

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

Moles = number of atoms ÷ Avogadro's constant

$$= (4.816 \times 10^{24}) \div (6.02 \times 10^{23})$$

= 8 mol of Fe

What do each of the different state symbols mean?

What do each of the different state symbols mean?

$$(g) = gas$$

$$(aq) = aqueous$$

$$(s) = solid$$

$$(I) = Iiquid$$

What is an ionic equation?

What is an ionic equation?

Ionic equations only show the reacting ions and can be written for any reaction involving ions in solution. The ions not included are called spectator ions.

E.g.
$$Ag^+_{(aq)} + CI^-_{(aq)} \rightarrow AgCI_{(s)}$$

Define relative atomic mass

Define relative atomic mass

The weighted average mass of an atom of an element compared to 1/12th of the mass of an atom of carbon-12.

Define relative formula mass

Define relative formula mass

The sum of the relative atomic masses of atoms in a formula unit. Used for giant ionic structures.

Define relative molecular mass

Define relative molecular mass

The sum of the relative atomic masses of atoms in a molecule.

Define molar mass

Define molar mass

The mass per mole of a substance, measured in g mol⁻¹.

Define ppm

Define ppm

Parts per million:

The ratio of one gas to another.

What is 1 ppm equivalent to in terms of mass and volume?

What is 1 ppm equivalent to in terms of mass and volume?

- For mass/volume concentrations:
- 1 ppm = 1 g m⁻³ = 1 mg L⁻¹ = 1 μ g cm⁻³
- For mass/mass concentrations:
- 1 ppm = 1 mg kg⁻¹ = 1 μ g g⁻¹

What is 2 mg cm⁻³ equivalent to in ppm?

What is 2 mg cm⁻³ equivalent to in ppm?

Convert mg to µg:

 $2 \text{ mg cm}^{-3} = 2 \times 10^3 \text{ µg cm}^{-3}$

 $1 \text{ ppm} = 1 \text{ µg cm}^{-3}$

So 2000 $\mu g \text{ cm}^{-3} = 2000 \text{ ppm}$

What is 0.75 g kg⁻¹ equivalent to in ppm?

What is 0.75 g kg⁻¹ equivalent to in ppm?

Convert g to mg:

$$0.75 \text{ g kg}^{-1} = 0.75 \times 10^3 \text{ mg kg}^{-1}$$

$$1 \text{ ppm} = 1 \text{ mg kg}^{-1}$$

So $0.75 \times 10^3 \text{ mg kg}^{-1} = 750 \text{ ppm}$

Define concentration

Define concentration

Concentration is the amount of solute dissolved per dm³ of solution.

How can concentration be calculated in g dm⁻³?

How can concentration be calculated in g dm⁻³?

Concentration (g dm⁻³) =

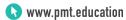
Mass (g) / Volume (dm³)

How can concentration be calculated in mol dm⁻³?

How can concentration be calculated in mol dm⁻³?

Concentration =

Moles / Volume (dm³)



What can you deduce about the number of moles of each reactant/product from a chemical equation like the one below? $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_2$$

What can you deduce about the number of moles of each reactant/product from a chemical equation like the one below?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

We can see from this equation that the ratio of propane to water is 1:4, hence for every one mole of propane that reacts, 4 moles of water is produced.

How do you calculate the number of moles of a given substance using the mass and molecular mass?

How do you calculate the number of moles of a given substance using the mass and molecular mass?

Number of moles =

Mass + Relative Molecular Mass

What is the molar volume of any gas at room temperature and pressure?

What is the molar volume of any gas at room temperature and pressure?

 24 dm^3

What is RTP?

What is RTP?

Room temperature and pressure:

- 20°C
- 1 atmosphere

What equation links molar volume at RTP and moles?

What equation links molar volume at RTP and moles?

Volume of gas at RTP (dm^3) = moles x 24

How many moles of oxygen are in 72 dm³ at RTP?

How many moles of oxygen are in 72 dm³ at RTP?

Moles = volume / 24

= 3 moles

What is the ideal gas law formula?

What is the ideal gas law formula?

PV = nRT

P - pressure (Pa)

V - volume (m³)

n - number of moles

R - gas constant (8.31 J K⁻¹mol⁻¹)

T - temperature (K)

At a temperature of 55.0 °C and a pressure of 275 kPa, a gas occupies a volume of 1.10 dm³. How many moles of the gas are present? The gas constant is 8.31 J K⁻¹mol⁻¹.

At a temperature of 55.0 °C and a pressure of 275 kPa, a gas occupies a volume of 1.10 dm³. How many moles of the gas are present? The gas constant is 8.31 J K⁻¹ mol⁻¹.

PV = nRT

- 275 kPa in Pa is 275000
 Pa
- 55.0 °C in K is 328 K
- 1.10 dm³ is 0.001 m³

$$n=(PV)/(RT)$$

$$n=0.10$$
 moles

How can percentage yield be calculated?

How can percentage yield be calculated?

Percentage yield =

(Actual yield ÷ Theoretical yield) x 100

What is the percentage yield of NH₃ if 40.5 g of NH₃ is produced from 20.0 mol H_2 and excess N_2 ?

What is the percentage yield of NH_3 if 40.5 g of NH_3 is produced from 20.0 mol H_2 and excess N_2 ?

Equation:
$$N_2 + 3H_2 \rightarrow 2NH_3$$

Moles of ammonia = 20/1.5 = 13.3 moles

Mass of ammonia = $13.3 \times (14+1+1+1) = 227 \text{ g}$

Percentage yield = $(40.5/227) \times 100 = 17.9\%$

Why might the actual yield of product be less than expected?

Why might the actual yield of product be less than expected?

- Incomplete reaction
- Unwanted side reactions
- Practical losses, for example some solid may get lost when being transferred between beakers

What is the atom economy of a reaction?

What is the atom economy of a reaction?

Atom economy is a measure of the efficiency of the reaction. It looks at the amount of reactants that get turned into useful products.

How can atom economy be calculated?

How can atom economy be calculated?

Atom economy=

(Molar mass of desired product + total molar mass of products) x 100

the atom Fill in the gap: 'The economy, the more sustainable and efficient the process'

Fill in the gap: 'The _____ the atom economy, the more sustainable and efficient the process'

Higher

What are displacement reactions?

What are displacement reactions?

A displacement reaction occurs when one element replaces another element in a compound.

$$A + BC \rightarrow B + AC$$

Write the chemical equation for the reaction that takes place between bromine and potassium iodide

Write the chemical equation for the reaction that takes place between bromine and potassium iodide

$$Br_2 + 2KI \rightarrow I_2 + 2KBr$$

What are the general products when an acid reacts with a metal?

What are the general products when an acid reacts with a metal?

Salt and hydrogen

Acid + metal → salt + hydrogen

What are the general products when an acid reacts with a metal carbonate?

What are the general products when an acid reacts with a metal carbonate?

Salt, water and carbon dioxide

Acid + metal carbonate→ salt + water + carbon dioxide

What are the general products when an acid reacts with a metal oxide?

What are the general products when an acid reacts with a metal oxide?

Salt and water

Acid + metal oxide→ salt + water

What is the chemical equation for the reaction that takes place between hydrochloric acid and sodium?

What is the chemical equation for the reaction that takes place between hydrochloric acid and sodium?

$$2HCI + 2Na \rightarrow 2NaCI + H_2$$

What is the chemical equation for the reaction that takes place between sulfuric acid and magnesium oxide?

What is the chemical equation for the reaction that takes place between sulfuric acid and magnesium oxide?

$$H_2SO_4 + MgO \rightarrow MgSO_4 + H_2O$$

What are precipitation reactions?

What are precipitation reactions?

Precipitation reactions are reactions between two soluble salts which form an insoluble salt - the precipitate.

